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Hypospadias and Endocrine Disruption: Is There a Connection?
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Hypospadias is one of the most common con-
genital anomalies in the United States; it
occurs in approximately 1 in 250 newborns
or roughly 1 in 125 live male births (1,2).
Hypospadias can be defined as an arrest in
normal development of the urethral, foreskin,
and ventral aspect of the penis. This results in
a wide range of abnormalities, with the ure-
thral opening being anywhere along the shaft
of the penis, within the scrotum, or even in
the perineum (3). The more severe forms of
hypospadias are associated with penile curva-
ture. Left uncorrected, patients with severe
hypospadias may need to sit down to void
and tend to shun intimate relationships
because of the fears related to abnormal sexu-
ality. Babies born with severe hypospadias and
penile curvature may have “ambiguous geni-
talia” in the newborn period, making an
immediate accurate sex assignment difficult. 

The only treatment for hypospadias is
surgical repair of the anatomical defect (3).
Reconstruction, if performed by an experi-
enced surgeon, generally involves a single
outpatient procedure (3,4). Occasionally,
however, extensive surgery is required, or
patients may face “redo” surgeries to improve
suboptimal results (5). There is significant
morbidity associated with some surgical pro-
cedures to correct hypospadias as well as
potential psychosocial consequences of hav-
ing an abnormal genital (6,7). In addition to
the difficulty of surgery, the emotional and
physical stress for the parents of patients with
ambiguous genitalia must be considered (8).

In this paper we explore the hypothesis
that hypospadias may in part be the result of
exposure to synthetic and/or natural chemicals

that can perturb normal male development.
The fetus is especially sensitive to these chem-
icals known as endocrine disruptors that can
mimic or interfere with the natural hormones
that control development. We provide a brief
description of normal development of the
male external genitalia and review the preva-
lence, etiology, risk factors, and epidemiology
of hypospadias. We also present evidence con-
cerning the effects of recently discovered
xenobiotic antiandrogens on the development
of the male urogenital system. 

Classification of Hypospadias

Hypospadias is classified depending on the
location of the urethral opening (meatus)
(Figure 1) (3). Anterior hypospadias is
described as glandular (meatus on the inferior
surface of the glans penis; Figure 1A), coro-
nal (meatus in the balanopenile furrow;
Figure 1B), or distal (in the distal third of the
shaft; Figure 1C). Middle hypospadias is
along the middle third of the penile shaft.
Posterior hypospadias extends through the
proximal third of the penile shaft to the per-
ineum and is described as posterior penile (at
the base of the shaft), penoscrotal (at the base
of the shaft in front of the scrotum; Figure
1D), scrotal (on the scrotum or between the
genital swellings; Figure 1E), or perineal
(behind the scrotum or behind the genital
swellings; Figure 1F). Chordee or penile cur-
vature is a downward curvature of the penis
that typically accompanies the more severe
forms of hypospadias. Standard classification
of hypospadias does not take into account
the associated penile curvature. A patient
with severe curvature and an anterior urethral

meatus may in fact require a more extensive
surgery to correct both the curvature and the
abnormal urethra. 

Development of the Male
External Urogenital System
Formation of the external male genitalia is a
complex developmental process involving
genetic programming, cell differentiation,
hormonal signaling, enzyme activity, and tis-
sue remodeling. By the end of 4 weeks of
gestation, the hindgut and future urogenital
system reach the surface of the embryo at the
cloacal membrane on the ventral surface.
During this indifferent stage up to the
eighth week, the cloacal membrane, under
the genital tubercle, is divided into the anal
and anterior halves, the latter of which is
composed of the urogenital membrane. The
urogenital membrane is flanked on each side
by two genital swellings, forming the ure-
thral groove. At this point, masculinization
of the external genitalia commences under
the influence of testosterone converted to
5α-dihydrotestosterone (DHT) in response
to a surge of luteinizing hormone from the
pituitary. One of the first signs of masculin-
ization is an increase in the distance between
the anus and the genital structures. This is
followed by elongation of the phallus, for-
mation of the penile urethra from the ure-
thral groove beginning from the anus at
about 11 weeks, and development of the
prepuce (9,10). The entire male urethra is
formed by dorsal growth into the genital
tubercle and ventral growth and fusion of
the urethral folds (3,4,11).

The future prepuce begins to form at the
same time as the urethra and is dependent
on normal urethral development. At about
the eighth week of gestation, low preputial
folds (foreskin) appear on both sides of the
penile shaft, which join dorsally to form a flat
ridge at the proximal edge of the corona. The
ridge does not entirely encircle the glans. The
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Hypospadias is one of the most common congenital anomalies in the United States, occurring in
approximately 1 in 250 newborns or roughly 1 in 125 live male births. It is the result of arrested
development of the urethra, foreskin, and ventral surface of the penis where the urethral opening
may be anywhere along the shaft, within the scrotum, or in the perineum. The only treatment is
surgery. Thus, prevention is imperative. To accomplish this, it is necessary to determine the etiol-
ogy of hypospadias, the majority of which have been classified as idiopathic. In this paper we
briefly describe the normal development of the male external genitalia and review the prevalence,
etiology, risk factors, and epidemiology of hypospadias. The majority of hypospadias are believed
to have a multifactorial etiology, although a small percentage do result from single gene muta-
tions. Recent findings suggest that some hypospadias could be the result of disrupted gene expres-
sion. Discoveries about the antiandrogenic mechanisms of action of some contemporary-use
chemicals have provided new knowledge about the organization and development of the urogeni-
tal system and may provide additional insight into the etiology of hypospadias and direction for
prevention. Key words: antiandrogens, differentiation, external genitalia, gene expression, urogen-
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foreskin is transported distally by active
growth of mesenchymal tissue. The process
continues until the foreskin covers all of the
glans. The fusion is usually present at birth.
If the genital folds fail to fuse, the preputial
tissues do not form ventrally. Consequently,
in hypospadias preputial tissue is absent on
the ventrum, and it is excessive dorsally
(Figure 1) (3,4).

At the molecular and cellular level, at
approximately 8 weeks, the chronology of
penile differentiation commences. The
undifferentiated embryo proceeds along a
female pattern of differentiation until it is
altered by testosterone released by the fetal
testis, which develops from genes encoded
on the Y chromosome. It is at this time that
testosterone is converted to DHT by the
microsomal enzyme, type 2 5α-reductase,
for complete differentiation of the penis with
a male-type urethra and glans. 

Prevalence of Hypospadias

In 1997, the Centers for Disease Control and
Prevention (CDC) reported a doubling of
hypospadias from 1968 to 1993 in the
United States (1). Seven European countries,
including Norway, Sweden, England and
Wales, Hungary, Denmark, Italy, and France,
also reported increasing rates of hypospadias
during the 1960s, 1970s, and 1980s accord-
ing to the International Clearinghouse for
Birth Defects Monitoring Systems (12).
These results did not demonstrate a world-
wide trend. Increases were most notable in
the United States, Norway, and Denmark.
Also, it was determined that increases were
not seen in the less affluent and less industri-
alized nations (gross domestic product was
used as a marker of affluence and industrial-
ization) for which data were available.
Increasing trends in England, Canada, and
the northern Netherlands appeared to be
leveling off after 1985 (12). Between 1970
and 1986, there appeared to be no increase
in hypospadias in Finland (13). 

It is difficult to draw conclusions from
international birth defects monitoring
because different registries have different
reporting requirements and diagnostic crite-
ria as well as varying degrees of physician
compliance with reporting. However, two
independent surveillance systems in the
United States with consistent and unchang-
ing diagnostic criteria also reported signifi-
cant increases in hypospadias over 30 years
(1). Data from the Metropolitan Atlanta
Congenital Defects Program (MACDP), a
population-based registry that uses active case
ascertainment in 22 hospitals and clinics in
the Atlanta, Georgia, area, indicated that the
total hypospadias rate almost doubled from
1968 to 1993 (p < 10–6) at an annual rate of
increase of 2.9% (2). No single hospital in

the Atlanta metropolitan region was responsi-
ble for the observed increases. Between 1968
and 1990, severe cases increased from 1.1 to
2.7 per 10,000 live births (includes both
males and females) and by 1993 to 5.5 per
10,000 births per year (p < 10–6) (1). Severe
cases in this registry included the urethral
opening on the shaft of the penis, on the
scrotum, or perineum. 

The Birth Defects Monitoring Program
(BDMP), a program that gathered diagnoses
recorded on newborn discharge summaries
from hospitals nationwide, also reported an
increase in hypospadia; it increased from 20.2
per 10,000 live births in 1970 to 39.7 per
10,000 live births in 1993 (p < 10–6) (1).
Both independent surveillance programs indi-
cate a near doubling in reported rates of
hypospadias. It is unlikely that this increase is
due to greater sensitivity in the surveillance
programs because no major changes in case
ascertainment has occurred in the MACDP
or the BDMP during that period. It is possi-
ble that physicians’ reporting habits of
hypospadias have changed over time, particu-
larly in increased reporting of mild hypospa-
dias. This is not consistent, however, with
reports from the MACDP, which indicate
that the ratio of mild-to-severe hypospadias
decreased from 4.2 in 1968–1982 to 2.6 in
1983–1993 (1), and the unclassified hypospa-
dias decreased. This raises the question
whether the mild cases are underreported.

Nonetheless, these longitudinal studies sup-
port an increase in hypospadias in the United
States over a 14-year period.

Etiology

Reports of increasing prevalence of hypospa-
dias have raised questions concerning etiol-
ogy, treatment, and prevention. To date,
there is no comprehensive understanding of
the etiology of hypospadias that can inform
primary prevention efforts and improve ther-
apeutics. The etiology of many hypospadias
is often assumed to be multifactorial, impli-
cating some combination of genes and envi-
ronment in the development of the anomaly.
Efforts to define a clear etiology have been
unsuccessful. For example, 33 patients with
severe (scrotal or penoscrotal) hypospadias
were evaluated with a range of diagnostic
techniques including clinical assessment,
ultrasonography, karyotyping, endocrine
evaluation, and molecular genetic analysis of
the androgen receptor (AR) and 5α-reduc-
tase genes to classify and determine the cause
of the hypospadias. In 12 patients, diagnoses
were determined. The remaining 64% of
patients were classified as hypospadias of
unknown etiology (14). 

Genetic impairment. Theoretically,
genetic alterations in any of the genes
involved in development of the male urogeni-
tal system could result in hypospadias.
However, currently only a small percentage of
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Figure 1. Classes of hypospadias by location of the meatus. (A) Anterior, on the inferior surface of the glans
penis. (B) Coronal, in the balanopenile furrow. (C) Distal, on the distal third of the shaft. (D) Penoscrotal, at
the base of the shaft in front of the scrotum. (E) Scrotal, on the scrotum or between the genital swellings.
(F) Perineal, behind the scrotum or genital swellings.



hypospadias has been linked to genetic or
chromosomal damage (15–17). One in nine
patients with severe hypospadias had a single
amino acid replacement of the AR (17).
Single-strand conformational polymorphism
analysis revealed a missense mutation of exon
2 of the AR gene in 1 of 40 patients with dis-
tal hypospadias (18). Several other authors
concluded that mutations in the AR gene are
rarely associated with hypospadias (19–21),
implying that other factors are responsible. 

Homeobox (HOX) genes are transcription
factors that play a role in embryonic organiza-
tion and patterning. Genes of the Hoxa and
Hoxd clusters are expressed in regionalized
domains along the axis of the urogenital tract.
Transgenic mice with loss of function of sin-
gle Hoxa or Hoxd genes exhibit homeotic
transformations and impaired morphogenesis
of the urogenital tract (22–25). Human males
with hand–foot–genital syndrome, an autoso-
mal dominant disorder characterized by
mutations in HOXA13, exhibit hypospadias
of variable severity, suggesting that HOXA13
may be important in normal patterning of the
penis (26–28).

Fibroblast growth factor (FGF) genes
have been demonstrated to play a role in gen-
ital tubercle development (29). As with
Hoxa-13, Fgf-10 and insulin-like growth fac-
tor receptor (Igfr) knockout mice have been
shown to develop hypospadias. More specifi-
cally, the condition of the external genitalia
in Fgf-10 knockout mice suggests impair-
ment in the development of the glans penis.

Genetic mutations might also interfere
with epithelial–mesenchymal interactions
necessary for normal embryogenesis (30).
The Sonic hedgehog (Shh) gene is expressed
in the epithelium of the male urogenital
sinus and is not regulated by testosterone.
Shh has also been shown to be critical for
prostate development; however, it has not
been studied in relation to hypospadias (31).
Genetic impairment of Shh during develop-
ment may be involved in hypospadias and is
consistent with the well-established role of
Shh in limb development (32).

Indirect effects of genetic impairment.
Genetic mutations could theoretically inter-
fere indirectly with fetal testis and adrenal
testosterone production and with the ade-
quate virilization of the urogenital sinus and
external genitalia during embryogenesis if
the conversion of testosterone to DHT by
5α-reductase is interrupted. In addition, any
errors in the activity of enzymes involved in
converting cholesterol to testosterone could
indirectly affect urogenital virilization.
Aaronson et al. (16) determined the inci-
dence of defects in three major enzymes in
the biosynthetic pathway leading to the pro-
duction of testosterone (3β-hydroxysteroid
dehydrogenase, 17α-hydroxylase, and

17,20-lyase) in 30 boys with fully descended
testes but with penoscrotal or proximal shaft
hypospadias. One-half of the boys had evi-
dence of impaired function of one or more
of these enzymes, suggesting that there was
an underlying defect in the biosynthesis of
testosterone (16).

Attempts have also been made to link
hypospadias to low numbers of ARs. No
deficiencies in either AR or 5α-reductase lev-
els were found in preputial skin from boys
with hypospadias (33). Bentvelsen et al. (34)
demonstrated that androgens induce prolifer-
ation of ARs as well as increase AR levels
within cells. They did not find significant dif-
ferences in mean AR content and measured
AR expression in foreskins of boys with
hypospadias and age-matched controls (15).
However, they did not measure the mean AR
expression in the preputial folds during gesta-
tion when hypospadias is determined. 

Other risk factors. A number of maternal
and paternal risk factors have been sug-
gested. Maternal age and primiparity have
been significantly associated with hypospa-
dias, although some studies have questioned
the maternal age effect (35). Fisch et al. (36),
using data from New York (1983–1996) and
California (1983–1989, 1990–1995), found
that advanced maternal age increased the
risk factor for hypospadias by 20%. They
also found a 50% increase in severe cases in
sons of the older mothers (> 35 years).

Paternal risk factors associated with
hypospadias include abnormalities of the
fathers’ scrotum or testes (37) and low sper-
matozoa motility and abnormal sperm mor-
phology (38). Fritz and Czeizel (38) suggested
that perhaps the recent increase in hypospa-
dias reflects the improvement in fertility
treatment, where the number of children
born to subfertile men is increasing.

In addition to parental risk factors, lower
birth weight has been associated with
hypospadias (39). Fredell et al. (39) examined
discordant monozygotic twins and found that
the the birth weight of the twin with
hypospadias was 78% of the birth weight of
the twin without hypospadias. The birth
weight difference was still significant when
compared with birth weight difference
between healthy monozygotic twins. Another
study found that boys with hypospadias have
a lower placental weight than control boys
(40). Growing evidence suggests that andro-
gens play a role in the lower birth weight of
girls compared to boys (41). Exposure to an
agent that compromises the weight-gaining
advantage of androgen during gestation
could play a role in lowered birth weight and
development of hypospadias.

Prenatal exposure to progestins or com-
bined progestins and estrogens led to a 4-fold
increase in hypospadias (8.3% among cases

vs. 1.8% among controls) (42). In another
study, there were two cases with hypospadias
among 53 males conceived via in vitro fertil-
ization; both of the cases were exposed to
progesterone administration up to the eighth
week of gestation (43). In a study in
Maryland, Silver et al. (44) found a 5-fold
increase in risk of hypospadias in boys con-
ceived by in vitro fertilization, again supple-
mented with progesterone through the eighth
week, with an incidence of 1.5%. In both
studies, advanced age and prior fertility prob-
lems confound the associations. However,
advancing age has been associated with
advancing body burden of persistent, bioac-
cumulative xenobiotics. The women in these
studies were ≥ 35 years of age. On the other
hand, in an 846 case–control pair study using
data from eight countries, Kallen et al. (45)
found no association between contraceptive
use and hypospadias. A meta-analysis of first
trimester exposure to progestins and oral
contraceptives also showed no increased risk
for hypospadias (46). Exposure to the phar-
maceutical diethylstilbestrol (DES) was
excluded in this study. Cosgrove et al. (47)
reported one case of hypospadias among 11
DES-exposed males compared with none in
4 controls. This is hardly evidence for a
causal relationship. In their larger survey
(225 cases and 111 controls), a risk ratio of
7.2 for urination problems was discovered,
suggesting a urethral problem (47). Gill et al.
(48), in an extensive follow-up of DES off-
spring, report no finding of hypospadias.

North and Golding (49) found that
mothers (n = 7,928 male births) who took a
codeine preparation during the first trimester
had significantly more sons born with
hypospadias than mothers who did not (2.3%
vs. 0.5%). The odds for developing hypospa-
dias were 2.07 [95% confidence interval (CI),
1.00–4.32; p = 0.041] if the mother took iron
supplements during the first 18 weeks of
pregnancy and 3.19 (95% CI, 1.50–6.78; p =
0.002) if the mother had influenza in the first
trimester (49).

Environmental factors. In the past, envi-
ronmental factors were generally ruled out as
causes for hypospadias (35,40). More
recently, however, multicausality models
include environmental contaminants to
determine risk of developing a given pheno-
type. For example, familial clustering of
hypospadias among first-degree relatives has
traditionally been perceived as evidence of a
strong genetic component in the etiology of
hypospadias. In light of the growing number
of endocrine disruptors reported in human
tissue (50,51), exposure to environmental
contaminants is now being considered in
familial clusters because of the high probabil-
ity of shared exposure. In those cases where
the effects are the most profound, genetic

Children’s Health • Hypospadias and endocrine disruption

Environmental Health Perspectives • VOLUME 109 | NUMBER 11 | November 2001 1177



predisposition exacerbated by environmental
exposure should be considered (38).

The increases of multiple end points of
male dysgenesis over the past 50 years co-
occurring with increasing production and
use of synthetic chemicals has raised con-
cerns that environmental factors may play a
role in the etiology of these problems
(52,53). Increasing rates of hypospadias have
paralleled reports of other untoward end
points related to male reproductive health,
including increasing rates of testicular cancer
(54) and cryptorchidism, and decreasing
semen and sperm quality (55). Cheng et al.
(56) found that 8% of patients (n = 252)
with undescended testes also had urogenital
anomalies and over 50% of those were
hypospadias. Prener et al. (57) found that
testicular cancer risk increases in cases with
undescended testicles [relative risk (RR) =
5.2; 95% CI, 2.1–13.0] and hypospadias
(RR = 4.2; 95% CI, 0.4–42.7) as well as
reduced sperm production and quality. The
authors point out that this suggests there
may be a common causal agent.

Changes in gene expression in the pres-
ence of xenoantiandrogens. Hypospadias as
the result of disrupted gene expression during
embryogenesis provides a potential explana-
tion for some of the unexplained cases
among individuals who do not have genetic
mutations. Several environmental antiandro-
gens have been discovered since 1994, each
having unique mechanisms of action that
interfere with differentiation and function
(58). Under normal conditions, testosterone
dissociates from its carrier proteins in plasma
and enters cells via passive diffusion (59).
Once in the cell, testosterone binds to the AR
and induces conformational changes that
protect the complex from degradation by
proteolytic enzymes (59). This conforma-
tional change is also required for AR dimer-
ization and DNA binding—steps necessary
for the effects of testosterone to be expressed.
The AR complex then binds the androgen
response element along the DNA and acti-
vates transcription of genes leading to devel-
opment of the male gonad from the gene
products. Androgen binding also displaces
heat shock proteins, possibly relieving con-
straints on receptor dimerization or DNA
binding. DHT also binds the AR with
enhanced androgenic activity, in part because
of its slow dissociation rate from the AR (59).

Antiandrogens can interfere with the
proper conformational change necessary to
stabilize the AR that allows DNA binding.
They can also inhibit AR binding DNA
because of increased AR degradation, or
increase the failure of mixed-ligand AR dimer
binding DNA because of inappropriate
dimer conformation. They can also interfere
with the ability to release receptor-associated

heat shock proteins (58). In utero exposure to
p,p´-DDE, the persistent, lipophilic metabo-
lite of DDT, can lead to feminization of the
developing male fetus. p,p´-DDE inhibits
androgen binding to the AR and inhibits
transcription in androgen-responsive genes.
Pregnant rats gavaged with p,p´-DDE pro-
duced pups that exhibited reduced anogenital
distance (AGD), hypospadias, and cryp-
torchidism (58). The doses used in this study
were within the range of human exposure
(60,61). The authors discovered that p,p´-
DDE is 1/10th as potent as flutamide, a
pharmaceutical used to treat adults with
prostate cancer (58).

Another pharmaceutical, finasteride, pro-
vides a different model for an antiandrogen.
It inhibits human type 2 5α-reductase,
responsible for converting 5α testosterone to
DHT (62). This drug is used to treat benign
prostatic hyperplasia because it decreases cir-
culating and tissue levels of DHT. 

Normal urogenital differentiation also
relies on the interdependency of testosterone
with epidermal growth factor (EGF), a
potent mitogen. The AR mediates EGF’s
role in male sexual differentiation (63). The
content of EGF increases in the fetal genital
tract of mice with advancing differentiation
(64). EGF alone induces partial virilization
of the external genitalia in vivo, and in the
presence of anti-EGF serum, differentiation
is inhibited. Full differentiation, however,
requires the presence of testosterone (63),
similar to the role of EGF to promote
growth and differentiation of the mouse
uterus and vagina (65). Reduced EGF den-
sity in foreskins was discovered in 16 chil-
dren undergoing hypospadias surgery
compared with 22 children undergoing cir-
cumcision (p = 0.001), although there was no
reduction in mean EGF receptors (EGFR)
(66). This suggests interference with receptor
binding. EGF has a wound-healing effect in
the genitourinary tract, leading these authors
to suggest that the lack of EGF may reflect
some of the wound-healing problems associ-
ated with hypospadias surgery. 

Although 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD or dioxin) has not been
demonstrated in the laboratory to cause
hypospadias in males, it induces c-Src kinase
activity and reduces EGFR binding during
testicular development following a single
intraperitoneal dose of dioxin (0.1, 1.0, 5.0,
and 10.0 µg/kg/body weight) in 21-day-old
rats (67). Dioxin, as well as furans, polychlo-
rinated biphenyls (PCBs), and some chlori-
nated pesticides (e.g., p,p´-DDE, dieldrin,
heptachlor, chlordane, toxaphene, lindane,
fenarimol) are cytochrome P450 (CYP450)
isozyme agonists that induce one or more of
the testosterone and benzo[a]pyrene hydrox-
ylases (68–70). Each of these chlorinated

products has its own pattern of action. For
example, the herbicide fenarimol both
induces and suppresses CYP450 activity
depending on dose, sex, and tissue studied
(70). In the case of dioxin, changes were
found at doses that are environmentally rele-
vant (68). More embryonic studies are
needed to determine if perturbation of these
enzyme systems interferes with imprinting or
morphogenesis.

Several synthetic chemicals that act as
xenoandrogens profoundly affect the develop-
ing reproductive tract and consistently induce
hypospadias in male offspring exposed in
utero (Table 1) (71,72). Vinclozolin, a com-
monly used fungicide on soft fruits and veg-
etables, induces female-like AGD, retained
nipples (areolas), cleft phallus, and hypospa-
dias in 100% of male offspring exposed dur-
ing sexual differentiation (100 mg/kg/day to
pregnant rats) (71,73). AGD and areolas
were reported at the lowest dose adminis-
tered, 3.125 mg/kg/day; hypospadias was
reported at 50 mg/kg/day. Gray and col-
leagues (71,73) point out that target tissue
responses differ depending on varying AR
numbers, the presence or amount of nuclear
coactivators and repressors, the availability of
androgen response elements on androgen-
dependent genes, and tissue metabolism.
The parent compound, vinclozolin, is inert
and acts through two active metabolites that
competitively bind and inhibit the AR with
different potency (74). The metabolites shift
active ARs to inactive ARs by binding to
only a small percentage of cellular ARs, thus
preventing maximal DNA binding, reducing
androgen gene expression and protein syn-
thesis, and ultimately altering morphologic
development. 

Procymidone, another antiandrogenic
fungicide, induces hypospadias in all male
offspring of pregnant rats fed 200 mg/kg/day
during sexual differentiation (75). At the
lowest dose administered, 25 mg/kg/day,
hypospadias, areolas, AGD, and reduced
weight of androgen-dependent tissues,
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Table 1. Environmental endocrine disruptors that
cause hypospadias in laboratory animals.

Type Chemical

Agricultural and public health 
Insecticide p,p´-DDE (breakdown

product of DDT)a
Fungicides Vinclozolina

Procymidonea

Herbicide Linurona

Industrial 
Plastic components DBPa

DEHPa

Persistent organochlorines Dioxin (TCDD)b
PCB 169b

Data from Gray et al. (71) and Hurst et al. (72).
aReduced anogenital distance, the most sensitive end
point. bOnly in females; in all other cases, females have
not been examined to date.



including the glans penis, were reported. In
vitro, procymidone inhibits DHT-induced
transcriptional activation in cell lines trans-
fected with human AR. The range of effects
is similar to those associated with vinclozolin
and p,p´-DDE (71).

Male rats perinatally exposed to dibutyl
phthalate (DBP) and diethylhexyl phthalate
(DEHP) have reduced AGD, retained nip-
ples, epididymal agenesis, undescended testes,
and hypospadias. Gray et al. (76) never found
a no-effect level for the phthalates. They also
believed that phthalates exerted their antian-
drogenic action through a mechanism other
than AR antagonism (71). Follow-up studies
found that DBP, DEHP, and diisononyl
phthalate (which is weaker) inhibit fetal
testosterone production rather than competi-
tively binding AR (77,78). Gray et al. (73)
propose that for some end points in male
development, especially AGD, there may be
no threshold dose of an active compound. 

Linuron, a widely used herbicide, is a
weaker AR antagonist than procymidone and
vinclozolin. It also causes reduced AGD,
retained nipples, and low incidence of epispa-
dias (1:13). The other lesions of the male
reproductive tract are not similar to those
caused by procymidone and vinclozolin (71).

Changes in gene expression in the pres-
ence of xenoestrogens. There are currently no
known xenoestrogens that have been associ-
ated with hypospadias, nor is there clear evi-
dence in the literature on how xenoestrogens
might cause hypospadias. However, the sons
and daughters exposed in utero to DES pro-
vide an excellent model for interrupted gene
expression during development. They suffer
a broad range of reproductive tract prob-
lems, although hypospadias has rarely been
reported (79,80). Abnormalities of the ure-
thra (4.4% vs. 0%; p = 0.017) and problems
passing urine (12.9% vs. 1.8%; p = 0.0003)
were significantly higher in DES sons than
in controls (79). Although data do not sup-
port an association between DES and
hypospadias in humans, in male rat pups
exposed to DES on gestation days 13, 16,
18, and 20, hypospadias was observed at all
doses administered (0.015, 0.03, and 0.60
mg/kg subcutaneous) (81). 

There are a number of possible mecha-
nisms by which xenoestrogens might alter
development of the penis and urogenital
tract, from influencing specific areas of the
brain to directly affecting the development
of the reproductive organs. In addition, each
xenoestrogen can manifest a unique range of
molecular mechanisms that differ depending
on the stage of development and tissue
involved. For example, the widely used
insecticide methoxychlor is both estrogenic
and antiandrogenic, depending on time of
exposure and target tissue involved. It must

be metabolized to be active, and its metabo-
lites at the molecular level bind both the
estrogen receptor and the AR (82).

As mentioned earlier, Hox genes play an
essential role in organization of the urogenital
system. The expression of these abdominal
Hoxa genes in embryonic mice is under con-
trol of estrogen (and progesterone) (82). DES
inhibits expression of Hoxa-10 gene in devel-
oping female reproductive tissue in mice.
Some anomalies induced by perinatal admin-
istration of DES to mice resembled morphol-
ogy in Hoxa-10, Hoxa-11, and Hoxd-13
mutant mice. Thus, in addition to a possible
primary defect in Hox genes, improper regu-
lation or expression of hormonal factors dur-
ing embryogenesis could disrupt normal
expression of Hox genes as well, and lead to
reproductive tract anomalies. If it is deter-
mined that environmental endocrine disrup-
tors with estrogenic activity can repress
abdominal Hox gene expression in the devel-
oping fetus, this mechanism provides an
explanation of how transient in utero expo-
sure to an endocrine disruptor(s) could lead
to a permanent anomaly such as hypospadias.

Soy-based diets, rich in phytoestrogens,
can affect male sexual differentiation in labo-
ratory animals and cause male genital tract
tumors or developmental disorders. Santti et
al. (84) hypothesized that phytoestrogens
and structurally related compounds that
have a weak affinity for the estrogen receptor
but are present in large quantities in the diet
could act as antiestrogens. To date, there are
no studies revealing a mechanism of phyto-
estrogens that could lead to hypospadias.

Exposure 

Little quantitative, empirical data on human
embryonic or fetal exposure to xenobiotics
exist, even though these individuals are the
most vulnerable to endocrine disruptors
(85). Humans are continually in contact
with endocrine-disrupting chemicals: for
example, pesticides; concentrated food prod-
ucts containing natural plant estrogens; and
by-products and end products of modern
technology, including plastics and plastic
components, detergents, pharmaceuticals,
perfumes and cosmetics, among others
(86,87). Some of these substances do not
degrade rapidly, and because of their persis-
tence, they accumulate in human tissue over
a lifetime (50). Diet, lifestyle choices, and
occupation play a large role in determining
individual exposure to synthetic estrogens
and antiandrogens, which varies significantly
between individuals and populations based
on cohort age and geographic location. By
the time a woman reaches reproductive age,
she shares her accumulation of the persistent
chemicals with her offspring in the womb
and through breast-feeding. For example, in

1998, p,p´-DDE was the most frequently
recovered contaminant in amniotic fluid of
women ≥ 35 years of age (range 0.1–0.63
ng/mL; n = 41), even though agricultural use
of DDT in the United States was restricted
in 1972 (60). PCBs and phytoestrogens
(demonstrated estrogens) have also been
recovered in amniotic fluid (60). On a
broader scale, a CDC nationwide survey of
contaminants in urine found that women
between 20 and 40 years of age had signifi-
cantly higher voiding concentrations of the
metabolites of DEHP (demonstrated antian-
drogens) than any other cohort. The main
route of exposure in this case was thought to
be inhalation (87).

Total cumulative worldwide use of DDT
is estimated to be 1,500,000 metric tons
since it was first produced in 1938. The
breakdown products of DDT have a half-life
of 58 years in temperate climates, which
means that more than one-half of the DDT
produced and its degradation products are
still in the environment (88). Figures for use
of vinclozolin, linuron, and procymidone are
more difficult to find. The data are patchy,
dependent upon weather conditions from
year to year, crops under tillage, regional
growing patterns, and compulsory reporting
of use. However, it is estimated that 1 billion
pounds of phthalates are produced each year.
It is difficult to define what percentages of
that are DBP and DEHP (89).

Human Epidemiology

A limited number of human epidemiologic
studies have examined the risk of hypospadias
in offspring of parents based on regional agri-
cultural and industrial background exposure
and lifestyle (Table 2). A study in Minnesota
found an increased risk of urogenital anom-
alies in the general population when crop
regions were compared. The odds ratio was
1.56 in the corn/soybean region compared
with 2.25 in the wheat/sugar beet/potato
region of the state (90). The latter region was
considered a high-use region based on
poundage applied of fungicides and chlorphe-
noxy herbicides. Not only are offspring of
farmers in this region at greater risk but chil-
dren of nonagriculturally employed parents
living in the same region are as well. Children
conceived in the spring were at greatest risk
for all birth defects (p < 0.01), which coin-
cided with the season of heaviest pesticide use.
Hypospadias was not distinguished among
the urogenital effects in this study. 

A Canadian study comparing birth defects
among four communities found a significant
increase in urogenital defects between one
community and three others that were not as
industrialized (91). Hypospadias was the only
end point that was significantly different
among the communities. No association was
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made with a specific industry in the commu-
nity. However, three industries in the high-
risk community (producers of polyvinyl
chloride, aluminum, and paper and pulp)
are among those associated with the release
of dioxin and dioxin-like compounds. As
with the Minnesota study (90), the urogeni-
tal defects were not categorized.

Hypospadias has been correlated with
TCDD in boys born after an explosion in
Seveso, Italy, in 1976. Exposure decreased
across four zones extending distally from the
factory site, based on soil contamination
(92). Zone A was the area of highest exposure
(TCDD = 192.8 µg/m2). Zones B and R had
decreasing concentrations of TCDD that
varied from 3 to 43.8 µg/m2 in Zone B and
0.9 µg/m2 to 9.7 µg/m2 in Zone R. Zone
Non-ABR (not affected by the explosion)
was included in the study for comparison.
Zone A had two mild birth defects (n = 26)
and no hypospadias. Soon after the explo-
sion, Zone A was affected by abortions
(spontaneous and recommended) and still-
births. There were 4 cases of hypospadias in
435 births in Zone B (~1:100 births or 1:54
male births), which decreased to 4 cases in
2,439 births in Zone R (~1:602 live births or
1:305 male births) and to 41 cases in 12,391
births in Zone Non-ABR (~1:300 live births
or 1:150 male births). It is not clear if all
hypospadias cases were reported. As with
most epidemiologic studies looking for dif-
ferences across a large number of birth
defects, the data specific to hypospadias are
inconclusive. 

Dolk et al. (93) reported a small and
marginally significant increase in hypospadias
among sons of families living near hazardous-
waste landfill sites in Europe (p = 0.06). In a
Danish study looking at cryptorchidism and
hypospadias in the offspring of farmers and
women gardeners, Weidner et al. (94) found
no risk for hypospadias but an increase for
cryptorchidism. A Norwegian study looking
at 192,417 births between 1967 and 1991,
where the parents were identified as farmers,
revealed an odds ratio of 1 for hypospadias
(95). However, between 1967 and 1971, the
odds increased to 2.06 among tractor
sprayers. Prevalence was greatest throughout
the study for April–June conceptions and
grain farming.

A longitudinal pregnancy study (n =
7,928; p = 0.001) in the United Kingdom
concluded that boys born of vegetarian
mothers have an odds ratio for hypospadias
of 4.99 (95% CI, 2.1–11.88) (49). Sons of
vegetarian mothers who consumed only
organic produce had no hypospadias, where
1.07 cases were expected. Although these boys
represented a very small fraction of the study
population, this raises the question whether
pesticides used on fruits and vegetables may

be involved, rather than phytoestrogens.
Mothers who drank soy milk and ate soy
products delivered a larger proportion of
boys with hypospadias, although this was
not statistically significant. Mothers who
were vegetarians before their pregnancies but
became omnivores throughout pregnancy
were no more likely to have a son with
hypospadias than those mothers who were
never vegetarians (49). 

Evidence in Wildlife 

Although hypospadias has been reported in
domestic animals (96), it has never been
reported in wildlife, perhaps because of the
difficulties associated with examination.
However, a 1.5-year-old zoo polar bear was
recently discovered with hypospadias. The
captive-bred bear was presumed to be a
female until it was examined for a urinary
problem (97). Recent findings of abnormal
baculum among mink and river otters on the
lower Columbia River (98) and unusual
external genitalia and pseudohermaphro-
ditism among black and polar bears (99,100)
suggest that gonadal development in wild
mammals may currently be affected by xeno-
biotics. With the exception of the black
bears that were not monitored for contami-
nants, all of the above animals were carrying
elevated levels of organochlorine chemicals
(97–100), and in the case of the river otters,
there was a dose–response relationship with
the intensity of the problem (98). 

Estrogenic and antiandrogenic contami-
nants have been associated with impaired
phallus (penile) development in the American
alligator in several lakes in Florida (101).
Male mosquito fish from the same habitat
have gonopodia that are 25% smaller than
those of fish in a reference lake (102). The
alligators carry a range of known endocrine
disruptors in their tissue (e.g. dieldrin,
endrin, mirex, p,p´-DDE, oxychlordane,

trans-nonachlor, hexachlorobenzene, hep-
tachlor epoxide, heptachlor) (101). Although
it has been demonstrated that 17β-estradiol
disrupts postnatal penile development in
mice (103), the normal process of penile
development is poorly understood at the cel-
lular and molecular levels, and little is
known about how or whether exogenous
estrogens perturb penile development. It
could very well be that the animals are
exhibiting the result of exposure to a vast
number of mixtures of xenobiotics that
interfere with both estrogen and androgen
control of development.

Conclusion

Hypospadias is an anomaly with multiple eti-
ologies. Table 3 summarizes the mechanisms
that have been proposed as possible causes,
some of which have been demonstrated in
the laboratory and others that have been
hypothesized to account for the observed
effects. Perhaps, as the human genome pro-
ject progresses and more is revealed about the
genes controlling male development, other
genetic causes will be discovered to account
for some cases of hypospadias that are cur-
rently classified as idiopathic.

Over the past decade, however, rapid
advances in integrated cellular, molecular,
physiologic, biochemical, and toxicologic
research have revealed several stages of uro-
genital development that are vulnerable to
endocrine-disrupting chemicals. To date, the
activity of xenoestrogens and their feminizing
effects on males do not explain hypospadias.
However, since environmental antiandrogens
were first reported in 1995 (58), several
stages of male urogenital development have
clearly been revealed where specific synthetic
chemicals can impede normal molecular and
biochemical activity leading to frank expres-
sion of hypospadias. Despite these new dis-
coveries, the lack of a putative causal agent
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Table 2. Urogenital anomalies and hypospadias in offspring of mothers and/or fathers exposed to natural
and synthetic endocrine-disrupting substances.

Exposure/geographic location Outcome Identified risks Reference

Father’s occupation as farmer, Urogenital OR = 1.69; 95% CI, 1.06–2.64; (90)
pesticide applicator, Minnesota anomalies p = 0.06

Parents reside in four communities Urogenital One community had significantly (91)
with different industrial activity, anomalies more urogenital anomalies than the
Quebec, Canada other three

Parents exposed to dioxin after Hypospadias Increasing number of hypospadias (92)
an industrial explosion, Seveso, Italy in dose–response exposure to TCDD

(dioxin)
Within a 3-km radius of a Hypospadias OR = 1.96; 95% CI, 0.98–3.92; (93)

hazardous-waste landfill, Europe p = 0.06
Parent occupation as gardener or Urogenital Mother OR = 1.27; 95% CI, 0.81–1.99 (94)

farmer in year of conception, Denmark anomalies Father OR = 1.19; 95% CI, 0.96–1.49
Parent occupation as farmers, Norway Hypospadias OR = 1.00; 95% CI, 0.75–1.34 (95)

OR = 2.06; 95% CI, 1.00–4.23 for 
tractor applier (1967–1971)

Vegetarian mothers, United Kingdom Hypospadias OR = 4.99; 95% CI, 2.10–11.88; (49)
p = 0.001

OR, odds ratio. 



for hypospadias in humans continues to pose
a problem. This will become more of a prob-
lem if the list of antiandrogens continues to
grow. It will also increase the difficulty of
making personal and public health decisions
about reducing exposure of reproductive age
individuals. 

In the meantime, more new epidemio-
logic approaches are urgently needed to
determine whether endocrine disruptors are
involved in the etiology of hypospadias. We
hope that technology will continue to
improve and broaden the scope of detection
of contaminants in human tissue, and sur-
veillance programs will be established.
Surveys of urine and other tissue, such as
breast milk, from childbearing-age females
are needed, followed by laboratory confirma-
tion that the parent products and metabo-
lites in the tissue do or do not cause
developmental problems. Similarly, in epi-
demiologic studies where the risk more than
doubles for hypospadias and where there are
only associations between exposure with sus-
pected classes or groups of agricultural or
industrial chemicals, laboratory confirmation
of the safety of the suspected chemicals is
needed. To date, almost none of the 15,000
high volume chemicals, widely used and
found in the environment, have been tested
during development for their possible
endocrine-disrupting effects, either at high
or background exposure doses. 

The human embryo/fetus is exposed to
endocrine disruptors from conception to birth
via placental transfer from the mother. The
concentration of persistent xenobiotics trans-
ferred to the unborn is dependent on maternal
daily exposure as well as accumulated maternal

body burden, which varies among individu-
als. Even before the moment of conception,
the embryo is exposed to its mother’s back-
ground burden of persistent chemicals such
as PCBs, dioxins, furans, and DDT (105).
In addition, many xenobiotics are not persis-
tent and their exposure is transient, increas-
ing the difficulty of determining exposure in
utero. In light of the human suffering associ-
ated with hypospadias, determining the eti-
ology and exercising prevention should be
major goals for public health authorities and
clinicians, respectively.
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Table 3. Proposed explanations for the etiology of hypospadias.
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